Ingestion Layer

Ingestion Layer

Learn how to connect to data sources and ingest multimodal content for RAG systems.

Ingestion Layer

The ingestion layer connects your RAG system to data sources and handles the initial data collection.

Key Responsibilities

graph LR
    A[Data Sources] --> B[Ingestion Layer]
    B --> C[File System Monitor]
    B --> D[API Connectors]
    B --> E[Cloud Storage Sync]
    B --> F[Database Queries]
    
    C & D & E & F --> G[Preprocessing Queue]

Ingestion Patterns

Batch Ingestion

  • Process large volumes at once
  • Scheduled runs (daily, weekly)
  • Initial system setup

Streaming Ingestion

  • Real-time document processing
  • File system watchers
  • Event-driven updates

Incremental Updates

  • Only process changed files
  • Track versions
  • Minimize reprocessing

Implementation

# Conceptual ingestion pipeline
class IngestionPipeline:
    def ingest_from_s3(self, bucket, prefix):
        files = s3.list_objects(bucket, prefix)
        for file in files:
            if not already_indexed(file):
                content = s3.download(file)
                yield {
                    'content': content,
                    'metadata': extract_metadata(file),
                    'source': f's3://{bucket}/{file.key}'
                }

Data Source Connectors

Common integrations:

  • S3/Cloud Storage
  • SharePoint/Google Drive
  • Databases (PostgreSQL, MongoDB)
  • APIs (REST, GraphQL)
  • File systems
  • Email (IMAP)
  • Slack/Teams

Next lesson covers preprocessing.

Subscribe to our newsletter

Get the latest posts delivered right to your inbox.

Subscribe on LinkedIn