Preprocessing and Conditioning Layer

Preprocessing and Conditioning Layer

Transform raw data into clean, normalized content ready for embedding and retrieval.

Preprocessing and Conditioning Layer

Raw data needs cleaning and normalization before embedding. This layer ensures quality.

Preprocessing Pipeline

graph LR
    A[Raw Data] --> B{Data Type}
    B -->|PDF| C[Extract Text + OCR]
    B -->|Image| D[OCR/Vision]
    B -->|Audio| E[Transcribe]
    B -->|Video| F[Extract Frames + Audio]
    
    C & D & E & F --> G[Clean & Normalize]
    G --> H[Ready for Embedding]

Key Operations

Text Cleaning

  • Remove formatting artifacts
  • Fix encoding issues
  • Normalize whitespace
  • Language detection

Deduplication

  • Content hashing
  • Fuzzy matching
  • Version control

Metadata Enrichment

  • Extract dates, authors
  • Classify documents
  • Add tags
  • Generate summaries

Example

def preprocess_document(doc):
    # Clean text
    text = remove_artifacts(doc.content)
    text = normalize_whitespace(text)
    
    # Detect language
    lang = detect_language(text)
    
    # Extract metadata
    metadata = {
        'title': extract_title(doc),
        'date': extract_date(doc),
        'language': lang,
        'word_count': len(text.split())
    }
    
    return {
        'text': text,
        'metadata': metadata
    }

Next: Embedding and indexing.

Subscribe to our newsletter

Get the latest posts delivered right to your inbox.

Subscribe on LinkedIn