
Preprocessing and Conditioning Layer
Transform raw data into clean, normalized content ready for embedding and retrieval.
Preprocessing and Conditioning Layer
Raw data needs cleaning and normalization before embedding. This layer ensures quality.
Preprocessing Pipeline
graph LR
A[Raw Data] --> B{Data Type}
B -->|PDF| C[Extract Text + OCR]
B -->|Image| D[OCR/Vision]
B -->|Audio| E[Transcribe]
B -->|Video| F[Extract Frames + Audio]
C & D & E & F --> G[Clean & Normalize]
G --> H[Ready for Embedding]
Key Operations
Text Cleaning
- Remove formatting artifacts
- Fix encoding issues
- Normalize whitespace
- Language detection
Deduplication
- Content hashing
- Fuzzy matching
- Version control
Metadata Enrichment
- Extract dates, authors
- Classify documents
- Add tags
- Generate summaries
Example
def preprocess_document(doc):
# Clean text
text = remove_artifacts(doc.content)
text = normalize_whitespace(text)
# Detect language
lang = detect_language(text)
# Extract metadata
metadata = {
'title': extract_title(doc),
'date': extract_date(doc),
'language': lang,
'word_count': len(text.split())
}
return {
'text': text,
'metadata': metadata
}
Next: Embedding and indexing.