High-Level RAG Architecture

High-Level RAG Architecture

Understanding the end-to-end architecture of production multimodal RAG systems.

High-Level RAG Architecture

A production RAG system consists of multiple layers working together. This lesson explores the complete architecture.

The RAG Stack

graph TD
    A[Data Sources] --> B[Ingestion Layer]
    B --> C[Preprocessing Layer]
    C --> D[Embedding Layer]
    D --> E[Indexing Layer]
    E --> F[Vector Database]
    
    G[User Query] --> H[Query Processing]
    H --> I[Retrieval Layer]
    I --> F
    F --> J[Ranking Layer]
    J --> K[Context Assembly]
    K --> L[Generation Layer]
    L --> M[Verification Layer]
    M --> N[Response]

The Six Core Layers

1. Ingestion Layer

  • Connects to data sources
  • Handles batching and streaming
  • Manages incremental updates

2. Preprocessing Layer

  • Cleans and normalizes data
  • Extracts text from images (OCR)
  • Transcribes audio/video
  • Parses documents

3. Embedding Layer

  • Converts data to vectors
  • Handles multimodal embeddings
  • Manages embedding models

4. Indexing & Storage

  • Stores vector embeddings
  • Maintains metadata
  • Optimizes for retrieval speed

5. Retrieval & Ranking

  • Searches vector database
  • Re-ranks results
  • Filters by metadata

6. Generation & Verification

  • Assembles context
  • Generates responses
  • Verifies accuracy
  • Provides citations

Data Flow

sequenceDiagram
    participant User
    participant API
    participant Retrieval
    participant VectorDB
    participant LLM
    
    User->>API: "What is our return policy?"
    API->>Retrieval: Process query
    Retrieval->>VectorDB: Search embeddings
    VectorDB-->>Retrieval: Top 10 docs
    Retrieval->>Retrieval: Re-rank results
    Retrieval->>LLM: Top 3 docs + query
    LLM-->>API: Generated response
    API-->>User: Response + sources

Next lessons cover each layer in detail.

Subscribe to our newsletter

Get the latest posts delivered right to your inbox.

Subscribe on LinkedIn