
Fully Local RAG with Ollama
Build a high-performance RAG system that runs entirely on your local machine, without any cloud dependencies.
Fully Local RAG with Ollama
A "Fully Local" RAG system is the ultimate solution for data privacy and disconnected environments (like submarines or high-security labs). Ollama provides the foundational engine for this architecture.
The Local Stack
- LLM: Llama 3 or Mistral (via Ollama).
- Embeddings: Nomic-Embed-Text (via Ollama).
- Vector DB: Chroma (running on local disk).
- Orchestration: LangChain (running in your Python script).
Implementation Walkthrough
1. Start the Models
ollama serve
ollama pull llama3
ollama pull nomic-embed-text
2. Connect the Orchestrator
from langchain_ollama import OllamaLLM, OllamaEmbeddings
from langchain_chroma import Chroma
llm = OllamaLLM(model="llama3")
embeddings = OllamaEmbeddings(model="nomic-embed-text")
# Initialize Chroma locally
db = Chroma(persist_directory="./local_db", embedding_function=embeddings)
Performance Optimization
Local hardware (GPUs/CPUs) is the bottleneck.
- Quantization: Use "Q4_0" or "Q5_K_M" model versions to save VRAM.
- Context Management: Limit local context to 4k-8k tokens, as larger contexts significantly slow down inference on consumer hardware.
Pros vs. Cons
| Feature | Local RAG | Cloud RAG (Bedrock/OpenAI) |
|---|---|---|
| Privacy | 🔒 Maximum | ⚠️ Limited by TOS |
| Cost | 💸 Hardware only | 💰 Per token price |
| Scale | 🐢 Slower on large docs | ⚡ Instant scaling |
| Setup | 🛠️ Complex hardware reqs | ☁️ API Key only |
Use Cases for Local RAG
- Confidential HR documents.
- Proprietary source code.
- Remote areas with no internet.
- Developer experimentation and testing.
Exercises
- Install Ollama and pull Llama 3.
- Ask it to summarize a local markdown file.
- Measure the "Tokens per second." Is it fast enough for a real user?