Fully Local RAG with Ollama

Fully Local RAG with Ollama

Build a high-performance RAG system that runs entirely on your local machine, without any cloud dependencies.

Fully Local RAG with Ollama

A "Fully Local" RAG system is the ultimate solution for data privacy and disconnected environments (like submarines or high-security labs). Ollama provides the foundational engine for this architecture.

The Local Stack

  1. LLM: Llama 3 or Mistral (via Ollama).
  2. Embeddings: Nomic-Embed-Text (via Ollama).
  3. Vector DB: Chroma (running on local disk).
  4. Orchestration: LangChain (running in your Python script).

Implementation Walkthrough

1. Start the Models

ollama serve
ollama pull llama3
ollama pull nomic-embed-text

2. Connect the Orchestrator

from langchain_ollama import OllamaLLM, OllamaEmbeddings
from langchain_chroma import Chroma

llm = OllamaLLM(model="llama3")
embeddings = OllamaEmbeddings(model="nomic-embed-text")

# Initialize Chroma locally
db = Chroma(persist_directory="./local_db", embedding_function=embeddings)

Performance Optimization

Local hardware (GPUs/CPUs) is the bottleneck.

  • Quantization: Use "Q4_0" or "Q5_K_M" model versions to save VRAM.
  • Context Management: Limit local context to 4k-8k tokens, as larger contexts significantly slow down inference on consumer hardware.

Pros vs. Cons

FeatureLocal RAGCloud RAG (Bedrock/OpenAI)
Privacy🔒 Maximum⚠️ Limited by TOS
Cost💸 Hardware only💰 Per token price
Scale🐢 Slower on large docs⚡ Instant scaling
Setup🛠️ Complex hardware reqs☁️ API Key only

Use Cases for Local RAG

  • Confidential HR documents.
  • Proprietary source code.
  • Remote areas with no internet.
  • Developer experimentation and testing.

Exercises

  1. Install Ollama and pull Llama 3.
  2. Ask it to summarize a local markdown file.
  3. Measure the "Tokens per second." Is it fast enough for a real user?

Subscribe to our newsletter

Get the latest posts delivered right to your inbox.

Subscribe on LinkedIn