Module 5 Lesson 1: Introduction to Document Loaders
·LangChain

Module 5 Lesson 1: Introduction to Document Loaders

Inbound Data. How LangChain standardizes the mess of real-world file formats into a single 'Document' object.

Document Loaders: Taming the Data Mess

LLMs thrive on text, but the world stores data in PDFs, Excel sheets, HTML pages, and SQL databases. If you manually read every file type, your code will be massive and buggy. Document Loaders provide a single, standard interface for "Inbound Data."

1. The Document Object

Every loader in LangChain produces the same output: a Document object.

  • page_content: The actual raw text (String).
  • metadata: A dictionary containing extra info (Source name, Page number, Author, etc.).

2. Why Metadata Matters

If your agent answers a question using a quote from a 500-page PDF, the user will ask: "Where did you find that?" Because every Document carries its metadata, the agent can reply: "I found that on Page 42 of the Strategy_2024.pdf file."


3. Top Loaders to Know

  • TextLoader: For simple .txt files.
  • PyPDFLoader: For complex PDFs.
  • WebBaseLoader: For scraping text from a URL.
  • DirectoryLoader: For loading every file in a folder (Bulk).

4. Visualizing the Ingestion Pipeline

graph LR
    F[PDF / CSV / Web] --> L[LangChain Loader]
    L --> D1[Document Object 1]
    L --> D2[Document Object 2]
    D1 --> P[Processor / Splitter]

5. Basic Code Example

from langchain_community.document_loaders import TextLoader

# Load the file
loader = TextLoader("./my_data.txt")
docs = loader.load()

# Access the content
print(docs[0].page_content[:100])
print(docs[0].metadata)

Key Takeaways

  • Loaders standardize messy external data types.
  • The Document interface is the universal format for ingestion.
  • Metadata is preserved to allow for citations and source-tracking.
  • LangChain has hundreds of community loaders for everything from Slack to Notion.

Subscribe to our newsletter

Get the latest posts delivered right to your inbox.

Subscribe on LinkedIn