
Why Data Conditioning Matters
Understand the critical importance of data cleaning and conditioning for RAG quality.
Why Data Conditioning Matters
Poor data quality leads to poor RAG performance. Conditioning is essential.
Impact of Poor Data
Dirty Data → Poor Embeddings → Irrelevant Retrieval → Bad Answers
Common Data Quality Issues
- Encoding problems: '�' characters
- Formatting artifacts:
\r\n\r\n - Duplicate content: Same doc indexed multiple times
- Noise: Headers, footers, page numbers
- Missing metadata: No dates, authors, sources
Quality Metrics
def assess_data_quality(text):
return {
'has_encoding_errors': contains_invalid_chars(text),
'duplicate_phrases': count_duplicates(text),
'noise_ratio': calculate_noise(text),
'metadata_completeness': check_metadata(text)
}
ROI of Conditioning
Without conditioning:
- Retrieval precision: 60%
- User satisfaction: 3/5
With conditioning:
- Retrieval precision: 85%
- User satisfaction: 4.5/5
Next: Deduplication strategies.