Why Data Conditioning Matters

Why Data Conditioning Matters

Understand the critical importance of data cleaning and conditioning for RAG quality.

Why Data Conditioning Matters

Poor data quality leads to poor RAG performance. Conditioning is essential.

Impact of Poor Data

Dirty Data → Poor Embeddings → Irrelevant Retrieval → Bad Answers

Common Data Quality Issues

  1. Encoding problems: '�' characters
  2. Formatting artifacts: \r\n\r\n
  3. Duplicate content: Same doc indexed multiple times
  4. Noise: Headers, footers, page numbers
  5. Missing metadata: No dates, authors, sources

Quality Metrics

def assess_data_quality(text):
    return {
        'has_encoding_errors': contains_invalid_chars(text),
        'duplicate_phrases': count_duplicates(text),
        'noise_ratio': calculate_noise(text),
        'metadata_completeness': check_metadata(text)
    }

ROI of Conditioning

Without conditioning:

  • Retrieval precision: 60%
  • User satisfaction: 3/5

With conditioning:

  • Retrieval precision: 85%
  • User satisfaction: 4.5/5

Next: Deduplication strategies.

Subscribe to our newsletter

Get the latest posts delivered right to your inbox.

Subscribe on LinkedIn