Images (PNG, JPG, Diagrams, Screenshots)

Images (PNG, JPG, Diagrams, Screenshots)

Process images for multimodal RAG including photos, diagrams, charts, and screenshots.

Images (PNG, JPG, Diagrams, Screenshots)

Images contain valuable information. Learn to process different image types for RAG.

Image Processing Pipeline

graph LR
    A[Image File] --> B{Image Type?}
    B -->|Text-heavy| C[OCR]
    B -->|Diagram| D[Vision Model]
    B -->|Photo| E[CLIP Embedding]
    B -->|Chart| F[Vision + Data Extract]
    
    C & D & E & F --> G[Indexed Content]

OCR for Text Images

import pytesseract
from PIL import Image

def extract_text_from_image(image_path):
    image = Image.open(image_path)
    
    # OCR
    text = pytesseract.image_to_string(image)
    
    # Get bounding boxes
    data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
    
    return {
        'text': text,
        'layout': data
    }

Vision Model Analysis

def analyze_diagram(image_path):
    with open(image_path, 'rb') as f:
        image_b64 = base64.b64encode(f.read()).decode()
    
    response = claude.messages.create(
        model="claude-3-5-sonnet",
        messages=[{
            "role": "user",
            "content": [
                {"type": "text", "text": "Describe this diagram in detail"},
                {"type": "image", "source": {"type": "base64", "data": image_b64}}
            ]
        }]
    )
    
    return response.content[0].text

Image Embeddings (CLIP)

import clip

model, preprocess = clip.load("ViT-B/32")

def embed_image(image_path):
    image = Image.open(image_path)
    image_input = preprocess(image).unsqueeze(0)
    
    with torch.no_grad():
        image_embedding = model.encode_image(image_input)
    
    return image_embedding.numpy()

Processing Strategy by Type

Screenshots

  • OCR for text
  • Vision model for layout understanding
  • Extract UI element positions

Diagrams

  • Vision model for interpretation
  • Extract relationships
  • Identify components

Charts/Graphs

  • Vision model for data extraction
  • Convert to structured data
  • Extract trends

Photos

  • CLIP embedding for similarity
  • Object detection if needed
  • Caption generation

Complete Example

def process_image(image_path):
    # Classify image type
    image_type = classify_image(image_path)
    
    if image_type == 'text_heavy':
        result = extract_text_from_image(image_path)
    elif image_type in ['diagram', 'chart']:
        result = analyze_diagram(image_path)
    else:
        result = {
            'embedding': embed_image(image_path),
            'description': generate_caption(image_path)
        }
    
    return result

Next: Audio processing.

Subscribe to our newsletter

Get the latest posts delivered right to your inbox.

Subscribe on LinkedIn