Data Preprocessing and Postprocessing

Data Preprocessing and Postprocessing

Clean your inputs and sanitize your outputs. Using Regex and validation libraries to ensure Gemini connects cleanly to your databases.

Data Preprocessing and Postprocessing

Bridging the messy world of humans and the structured world of databases.

Preprocessing (Input)

  • Truncation: If input > 1M tokens, cut it smartly (don't cut in the middle of a sentence).
  • Anonymization: Regex replace emails/SSNs with [REDACTED].
  • Formatting: Convert HTML to Markdown (LLMs read Markdown faster/better).

Postprocessing (Output)

Gemini returns a string. Your DB wants an Integer.

  • Strip formatting: Remove markdown code blocks (json ... ).
  • Validation: Use Pydantic.
    from pydantic import BaseModel, ValidationError
    
    class User(BaseModel):
        age: int
    
    try:
        u = User.model_validate_json(gemini_response)
    except ValidationError:
        # Handle error (maybe retry)
    

Summary

Never pipe AI output directly to a DB. Always sanitize it first.

In the final lesson of this module, we discuss Monitoring.

Subscribe to our newsletter

Get the latest posts delivered right to your inbox.

Subscribe on LinkedIn